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We show that a resonant magnetic perturbation applied to the boundary of an ideal plasma screw-

pinch equilibrium with nested surfaces can penetrate inside the resonant surface and into the core.

The response is significantly amplified with increasing plasma pressure. We present a rigorous veri-

fication of nonlinear equilibrium codes against linear theory, showing excellent agreement. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944818]

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) is routinely used

to study highly conductive, magnetically confined plasmas.1

However, fundamental difficulties in 3D ideal MHD arise

from the existence of pressure-driven infinite currents around

resonant rational surfaces.2,3 Historically, this led to the con-

clusion that pressure must be fractal2 or stepped.4 Recently,

a new class of 3D ideal-MHD equilibria with nested surfaces

has been proposed which allows for smooth pressure.5 This

class of equilibria exhibits current sheets at resonant surfaces

that produce a jump in rotational transform. For this class of

equilibria, all current densities are integrable and nested

surfaces are preserved for arbitrary three-dimensional geom-

etry. In particular, nonlinear 3D ideal-MHD equilibrium

codes can be verified for the first time.

In this paper, we consider, within this new theoretical

framework, the linear and nonlinear ideal plasma response to

a resonant magnetic perturbation (RMP) in a screw-pinch.

We investigate the details of the structure of the current sheets

and that of the pressure-driven Pfirsch-Schl€uter current.

We show that the RMP is amplified to large values as b is

increased and that the perturbation penetrates inside the reso-

nant surface. We perform an exact verification of nonlinear

MHD codes against solutions to Newcomb equation. To our

knowledge, these are the first equilibria with nested surfaces

and smooth, finite pressure gradient across a resonant surface

ever computed. Implications for experiments are discussed, in

particular, regarding equilibria where island-healing mecha-

nisms are at play.

II. IDEAL RESPONSE TO A RMP AT b 5 0

In this section, we review and extend recent results on

the calculation of the linear, ideal plasma response to a RMP

in a screw pinch with zero pressure and no flow.5 We show

that the existence of flux-surfaces in the perturbed equilib-

rium is ensured by the presence of an axisymmetric current

sheet on the resonant surface, which corresponds to a discon-

tinuity in the rotational transform. A non-axisymmetric

current sheet is also established as a necessary mechanism

for a complete island shielding. The spatial structure of these

currents is presented in detail. This section prepares the

background necessary for Sec. III, where we provide novel

predictions for the penetration and amplification of a RMP in

finite-b equilibria.

A. Equilibrium

The axisymmetric, ideal-MHD equilibrium in a screw

pinch with zero pressure and no flow satisfies

d

dr
B2

z 1þ i-2 r2

R2

� �� �
þ 2ri-2B2

z

R2
¼ 0; (1)

where Bz is the axial field, i- ¼ RBh=rBz is the rotational

transform, Bh is the poloidal field, and 2pR is the length of

the cylinder. The equilibrium is fully determined by the

value of the axial field at the origin, Bz(0), the rotational-

transform profile, i-ðrÞ, and the major and minor radius, R
and a. We choose

i-ðrÞ ¼ i-0 � i-1ðr=aÞ2 þ Di-=2 for r � rs

i-0 � i-1ðr=aÞ2 � Di-=2 for r � rs

(

with i-0 and i-1 such that i-ðrÞ jumps across the rational i-s

¼ 1=2 at rs¼ a/2, namely, i-ðrsÞ ¼ i-s6Di-=2. The solution for

Bz(r) can be obtained by integrating Eq. (1) from r¼ 0 to

r¼ rs, and then from r¼ rs to r¼ a, after imposing pressure

continuity, [[B2]]¼ 0, across the resonant surface. Here, B is

the total field and [[�]] is the jump across the surface. As a

matter of fact, a finite jump in transform, Di- > 0, translates

into a jump in both the poloidal and axial fields, [[Bh]] 6¼ 0

and [[Bz]] 6¼ 0. By virtue of Ampère’s law, this implies the

presence of an axisymmetric current sheet on the resonant

surface (from now on denoted as DC current sheet). A dis-

cussion on the structure of this current is provided in Sec.

II C. For Di- ¼ 0, there is no such current and all equilibrium

quantities are continuous and smooth. In that case, however,

the equilibrium is not an analytical function of the boundary,

namely, a perturbed equilibrium due to an arbitrarily small

RMP and with persistent nested surfaces does not exist, as

we shall now see.
Note: Paper YI3 2, Bull. Am. Phys. Soc. 60, 393 (2015).
a)Invited speaker.
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B. Linear response to a RMP

The linear plasma displacement,

n ¼ nrer þ nheh þ nzez ; (2)

induced by a non-axisymmetric, radial perturbation with a

single Fourier harmonic,

nrðr ¼ a; h; zÞ ¼ na cosðmhþ kzÞ ; (3)

to the boundary satisfies the linearized force-balance

equation

dj½n� � B0 þ j� dB½n� ¼ 0 ; (4)

where B0 is the equilibrium magnetic field and the linear,

“ideal” perturbation to the magnetic field is dB½n� � r
�ðn� B0Þ, and dj½n� � r � dB½n�. This reduces to

Newcomb’s equation6

d

dr
f

dn
dr

� �
� gn ¼ 0; (5)

where nr � nðrÞ cosðmhþ kzÞ. The functions f(r) and g(r)

are determined by the equilibrium

f ¼ B2
z ði-� i-sÞ2 �kr2 ; (6)

g ¼ f

r2
k2r2 þ m2 � 1ð Þ þ B2

z i-2
s � i-2

� �
2�k

2
i-2

s r ; (7)

where k ¼ �n=R; i-s ¼ n=m, and �k ¼ r=ðR2 þ r2i-2
s Þ.

Figure 1 shows the result of numerical integration of

Eq. (5) for an m¼ 2, n¼ 1 perturbation and for different val-

ues of Di-. The linear radial displacement is continuous and

smooth provided Di- > 0, i.e., provided that there is a DC

current sheet. However, for a continuous i-ðrÞ that contains

the resonance, i- ¼ i-s, Newcomb’s equation is singular and

the solution that is regular at the origin is n(r< rs)¼ 0 and

n(r� rs) 6¼ 0, i.e., the radial displacement is discontinuous.

This class of solutions is obtained by the linearly perturbed,

ideal equilibrium codes that are used to study non-

axisymmetric boundary perturbations in tokamaks7–9 and

stellarators.10

A discontinuous plasma displacement is inconsistent

with the assumption of nested flux-surfaces: in fact, magnetic

surfaces overlap if the displacement anywhere has

jdn=drj > 1. As can be inferred from Fig. 1, there must be a

critical value for the magnitude of the DC current sheet

above which jdn=drj < 1 and thus for which the solution is

consistent. An expression for the gradient of the displace-

ment at the resonant surface was estimated analytically in

Ref. 5

jn0sj ¼ 2i-0s
ns

Di-
; (8)

where ns� n(rs) and i-0s is the shear around the resonant sur-

face. Equation (8) can be obtained by studying the asymp-

totics of Eq. (5) for small values of x ¼ jði-� i-sÞ=i-0sj. Since

ns scales with na, we see that n0s is proportional to the bound-

ary perturbation and inversely proportional to Di-. The sine
qua non condition for the existence of equilibria is jn0j � 1,

which translates into Di- � Di-min, where

Di-min ¼ 2i-0sns : (9)

The continuous transform limit becomes a consistent solu-

tion as Di-min ! 0, i.e., for infinitesimally small perturbation

or infinitesimally small shear.

This analysis is linear and a priori limited to small bound-

ary perturbations, na/a 	 1; however, the prediction remains

valid for the nonlinear calculations, as shown in Ref. 5.

We would like to note that even for a small, local

change in the transform profile, i.e., a small jump Di-, the

global solution is significantly different and the displacement

penetrates inside the resonant surface all the way to the

origin.

C. Structure of the current sheets

In general, a current sheet is present on a given flux sur-

face if there exists a magnetic field discontinuity across this

surface, ½½B�� � Bþ � B� 6¼ 0. In fact, by virtue of Ampère’s

law, j¼r�B, this current sheet is given by

j ¼ ½½B�� � n̂ dðx� xsÞ; (10)

where n̂ is the unit vector normal to the surface and xs para-

metrizes points on the surface. We remark that j is strictly

speaking a current density and that any physically valid cur-

rent density must be integrable, so that the total current is fi-

nite. This is the case of Eq. (10).

In the system under consideration, namely, a perturbed

screw-pinch equilibrium, a discontinuity is present in the

equilibrium field, B0, and in the perturbed field, dB. The

former gives rise to an axisymmetric or DC current sheet,

while the latter produces a non-axisymmetric current sheet

with a helicity corresponding to the resonant mode num-

bers. The fact that [[B0]] 6¼ 0 is a consequence of the dis-

continuous rotational transform defining the equilibrium.

The reason for [[dB]] 6¼ 0 is less obvious. The general

FIG. 1. Solutions of Eq. (5) for an m¼ 2, n¼ 1 boundary perturbation and

for Di- ¼ 4� 10�2; 10�2; 10�3, and the singular case Di- ¼ 0 (discontinuous

curve). Colours merely indicate the inner (r< rs, blue) and outer (r> rs, red)

parts of the solution.
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expressions for the three components of the linearly per-

turbed field, dB ¼ r� ðn� B0Þ, as a function of the radial

displacement, nr ¼ nðrÞ exp½iðmhþ kzÞ�, are

dBr ¼
im

R
Bz i-� i-sð Þnr; (11)

dBh ¼ �h1 rð Þnr �
m2

k2r2 þ m2

r

R
Bz i-� i-sð Þn0r; (12)

dBz ¼ �h2 rð Þnr �
krm

k2r2 þ m2

r

R
Bz i-� i-sð Þn0r; (13)

where

h1 rð Þ ¼ B0h þ
k

k2r2 þ m2
krBh þ mBzð Þ (14)

h2 rð Þ ¼ B0z þ
Bz

r
� m=r

k2r2 þ m2
krBh þ mBzð Þ (15)

are defined by the equilibrium. In the particular case of con-

tinuous transform, the solution for n is discontinuous at

i- ¼ i-s, thus it follows that [[dB]] 6¼ 0 from Eqs. (12) and

(13). In the case of discontinuous transform, the displace-

ment n is continuous and smooth, but there still is a jump in

dB because the products ði-� i-sÞnr and ði-� i-sÞn0r are discon-

tinuous. This shows the general existence of a non-

axisymmetric current sheet.

An important question is whether these current sheets

are field-aligned, and if they are, whether they are aligned

with the field on the inside or on the outside of the surface.

We first consider the DC current sheet, which is given by

jDC ¼ ½½Bz��dðr � rsÞĥ� ½½Bh��dðr � rsÞẑ : (16)

The force produced by this current sheet and the equilibrium

magnetic field is

jDC � B6
0 ¼ ð½½Bh��B6

h þ ½½Bz��B6
z Þdðr � rsÞr̂; (17)

where 6 indicates either side of the surface. This force is

non-zero in general, which would seem to contradict the fact

that this is a force-free equilibrium. However, the sum of the

two forces vanishes

jDC � Bþ0 þ jDC � B�0 ¼ ½½B2
0��dðr � rsÞr̂ ¼ 0; (18)

since the equilibrium satisfies ½½B2
0�� ¼ 0 by construction.

This means that the current sheet is not aligned with either of

the fields on each side of the surface, but rather aligned with

the average surface field.

In general, the average j�B force produced by the total
current sheet and the total magnetic field is also zero. Using

j ¼ ½½B�� � n̂dðr � rsÞ, we have that

j� ðBþ þ B�Þ ¼ ½½B2��n̂ � ðBþ þ B�Þ � n̂½½B�� ¼ 0; (19)

since both [[B2]]¼ 0 and B � n̂ ¼ 0 are satisfied. Therefore,

the current sheets are aligned such that the forces acting on

each side of the surface are equal and opposite.

III. IDEAL RESPONSE TO A RMP AT b > 0

We now consider the ideal response to a RMP in a

screw-pinch with finite pressure and no flow. We show that

even at modest values of b the perturbation can be signifi-

cantly amplified and, as a consequence, penetrate inside the

resonant surface with values exceeding the boundary pertur-

bation amplitude. The results are confirmed by linear and

nonlinear calculations.

A. Equilibrium

The axisymmetric, ideal-MHD equilibrium in a screw

pinch with finite pressure and no flow satisfies

dp

dr
þ 1

2

d

dr
B2

z 1þ i-2 r2

R2

� �� �
þ ri-2B2

z

R2
¼ 0 (20)

and is uniquely determined by the value of the axial field at

the origin, Bz(0), the rotational-transform profile, i-ðrÞ, the

pressure profile, p(r), and the major and minor radius, R and

a. We choose

i-ðrÞ ¼ i-0 � i-1ðr=aÞ26Di-=2 ;
pðrÞ ¼ p0½1� 2ðr=aÞ2 þ ðr=aÞ4� ;

thus a continuous and smooth pressure profile such that

p(0)¼ p0 and p(a)¼ 0. The solution for Bz(r) can be obtained

by integrating Eq. (20) and imposing the continuity of the

total pressure, pþB2/2, across the resonant surface. Since

p is continuous, this condition is [[B2]]¼ 0.

We define b as computed at the origin

b ¼ 2p 0ð Þ
B2

z 0ð Þ
; (21)

and variations in b will correspond to variations in p(0).

B. Linear response to a RMP

The linearized force-balance equation still reduces to

Newcomb’s equation, Eq. (5), with the functions f(r) and

g(r) given by

f ¼ f jb¼0 ; (22)

g ¼ gjb¼0 þ �ki-2
s r3p0 ; (23)

where f jb¼0 and gjb¼0 are given in Eqs. (6) and (7), respec-

tively. Thus, the effect of the pressure gradient appears only

in the function g(r). As we shall see, this new term funda-

mentally changes the behaviour of n around the resonance

surface.

Figure 2 shows the result of numerical integration of

Eq. (5) for an m¼ 2, n¼ 1 perturbation, for a given value of

Di- and for different values of b. The perturbation is signifi-

cantly amplified around the resonant surface, even at modest

values of b. For example, at b¼ 1% the perturbation is

amplified by a factor of ns/na ’ 3 on the resonant surface

and penetrates all the way into the core with values exceed-

ing the boundary perturbation, n/na> 1, for a significant frac-

tion of the inner plasma column r< rs. We also observe that

055703-3 Loizu et al. Phys. Plasmas 23, 055703 (2016)
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the peak of the amplified perturbation is always occurring

very close to—but not exactly at—the resonant surface. In

order to quantify the amplification and penetration of the

RMP, we define two quantities

Armp ¼
ns

na

; (24)

Prmp ¼ 1� r

rs
; (25)

where r* is the radius at which n(r*)/ns¼ 1/e. The meaning

of Armp is quite obvious. The value of Prmp measures the per-

centage of inner plasma column (r< rs) in which the pertur-

bation is still larger than ns/e. For example, at b¼ 1%, we

have Armp ’ 3 and Prmp ’ 40%. Figures 3 and 4 show the de-

pendence of Armp and Prmp on b. Notice that the maximum

amplitude of Armp and Prmp depends on the magnitude of the

DC current sheet, or Di-, that is assumed in the initial equilib-

rium. The question of what sets the value of Di- in a plasma

is discussed in Sec. V.

An important question is whether the initial axisymmet-

ric equilibrium is interchange stable; for otherwise the results

are not meaningful. A necessary (but not sufficient) condi-

tion for interchange stability in a screw-pinch is given by the

Suydam criterion1

DS ¼ �
2p0i-2

rB2
z i-
02

 !
s

<
1

4
; (26)

and the corresponding stability limit is shown in Figs. 3 and 4.

While the actual stability limit can be reached slightly before

Eq. (26) is violated, as can be seen from the lack of data points

in Figs. 3 and 4, both the amplification and penetration of the

RMP are already significantly large before this limit is

attained.

Analytical understanding of the behaviour of the dis-

placement around the resonant surface can be obtained by

studying the asymptotics of Newcomb’s equation. Expanding

Eqs. (22) and (23), we have that

f � c1x2; (27)

g � c2 þ OðxÞ; (28)

for small x ¼ jði-� i-sÞ=i-0sj, and where

c1 ¼ ð�kB2
z i-
02r2Þs; (29)

c2 ¼ ð2�ki-2rp0Þs: (30)

Inserting the antsatz n� xa into Newcomb’s equation, we

find a quadratic equation for a, with solutions

a ¼ � 1

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� DS

r
; (31)

where DS¼�c2/c1 is the Suydam parameter, Eq. (26). At

b¼ 0 we have that DS¼ 0 and thus, from Eq. (31), a 2 {0,

�1}. This explains why in Fig. 1 the displacement has finite

ns even for continuous-transform: the solution n� x0 does

FIG. 2. Solutions of Eq. (5) for an m¼ 2, n¼ 1 boundary perturbation and

for different values of b, from b¼ 0% (lower curve) to b¼ 1% (upper

curve). For all cases Di- ¼ 10�3. Colours merely indicate the inner (r< rs,

blue) and outer (r> rs, red) parts of the solution.

FIG. 3. Amplification of the RMP on the resonant surface as a function of b.

Circles: D i- ¼ 5� 10�3. Stars: D i- ¼ 1� 10�3. The vertical dashed line

indicates the critical b above which the Suydam criterion is not satisfied.

FIG. 4. Penetration of the RMP inside the resonant surface as a function of b.

Circles: Di- ¼ 5� 10�3. Stars: Di- ¼ 1� 10�3. The vertical dashed line indi-

cates the critical b above which the Suydam criterion is not satisfied.

055703-4 Loizu et al. Phys. Plasmas 23, 055703 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.35.1.205 On: Thu, 24 Mar

2016 16:01:24



not diverge for x! 0. However, at finite b> 0, we have that

0>DS> 1/4 and thus n � k1xa1 þ k2xa2 , with

�1 < a1 < �
1

2
< a2 < 0 ; (32)

which necessarily implies that the displacement diverges

unless x is never zero, namely, if and only if Di- 6¼ 0.

Moreover, in order for the perturbed equilibrium to be physi-

cal, the DC current sheet must be sufficiently large to ensure

that the sine qua non condition, jn0j � 1, is satisfied. This

shows how important is the existence of this DC current sheet.

C. b-induced Pfirsch-Schl€uter current

In addition to the current sheets established on the reso-

nant surface, a pressure-driven Pfirsch-Schl€uter current is

expected to develop around the resonant surface. Here, we

derive an analytical expression for the perturbed parallel cur-

rent around the resonant surface in response to a RMP in a

screw pinch. We show that the Pfirsch-Schl€uter current can

be large but is always integrable and bounded by np0=Di-.
For simplicity, we consider only the axial component of

the perturbed current, djz, which corresponds to the perturbed

parallel current, djk ¼ ðBhdjh þ BzdjzÞ=B, in the limit of a

dominant axial field. The conclusions are the same in the

general case where djh is also considered.

The perturbed current, dj ¼ r� ðr � ðn� B0ÞÞ, can

be computed from the equilibrium field, B0, and the surface

displacement, n, which can be obtained from Newcomb’s

equation. One arrives to a general expression for djz of the

form

djz ¼ T0ðrÞnþ T1ðrÞn0 þ T2ðrÞn00; (33)

where T0, T1, and T2, are well-behaved functions. In particu-

lar, their behaviour around the resonant surface is

T0(r)�T1(r)� 1 and T2(r)�O(x). The corresponding behav-

iour of the radial displacement and its derivatives is, for

small b: n � 1; n0 � Oðx�1Þ, and n00 � Oðx�2Þ. Thus it

would seem that the current density around the resonant sur-

face behaves as 1/x, independently of pressure. However, it

turns out that the large terms in Eq. (33), i.e., those that scale

as 1/x, balance each other by virtue of Newcomb’s equation,

Eq. (5), and the only large term left is

djz � np0=x < np0=Di-: (34)

Numerical evidence of this is shown in Fig. 5, where the pro-

file of djjj is computed from the solution of Newcomb’s

equation and by using Eq. (33). From the top panel in Fig. 5,

one can see that the Pfirsch-Schl€uter current is bounded even

at r¼ rs. The middle and bottom panels in Fig. 5 confirm the

1/x-type behaviour at b> 0, exactly as predicted in Eq. (34).

To our knowledge, this is the first equilibrium with

nested surfaces and smooth, finite pressure gradient across a

resonant surface ever computed. As of now, however, these

calculations are linear. We now show how nonlinear codes

can also compute this class of equilibria and retrieve the lin-

ear results in the appropriate limit.

IV. VERIFICATION OF NONLINEAR CODES

Presently, the widely used, three-dimensional, nonlinear

ideal-MHD equilibrium codes VMEC11 and NSTAB12 are re-

stricted to work with smooth functions and thus cannot handle

discontinuities in the magnetic field (or current sheets). The

SPEC code13 does allow for discontinuities. SPEC formally

finds extrema of the multi-region, relaxed, MHD (MRxMHD)

energy functional, as proposed by Hole et al.14,15 In

MRxMHD, the magnetic topology is discretely constrained at

a finite number, N, of so-called, “ideal” interfaces, where dis-

continuities in the pressure and tangential magnetic field are

allowed. The volumes encapsulated by these ideal boundaries

undergo Taylor relaxation, thus MRxMHD equilibria are not

globally ideal; however, MRxMHD has been shown to

exactly retrieve ideal MHD in the formal limit N!1,16 and

SPEC was recently used to compute, for the first time, the sin-

gular current densities expected to form in three-dimensional

ideal-MHD equilibria.17

An exact verification of the SPEC code against solutions

of Newcomb’s equation, Eq. (5), was presented in a recent

letter for the case of zero-pressure.5 Here, SPEC is employed

to perform linear and nonlinear, ideal equilibrium calcula-

tions for the perturbed screw pinch with finite pressure. In

FIG. 5. Perturbed parallel current around the resonant surface, for b¼ 0

(dashed lines) and b¼ 0.5% (solid lines). Top: djjj as a function of the minor

radius. Middle: djjj/n as a function of the distance x to the rational. Bottom:

same as middle but in log-log scale. The dashed-dotted black line in the bot-

tom panel has slope �1. Colours merely indicate the inner (r< rs, blue) and

outer (r> rs, red) parts of the solution.
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the “ideal limit,” i.e., very large N, the MRxMHD energy func-

tional reduces to W �
Ð
½p=ðc� 1Þ þ B2=2�dv. Equilibrium

states are obtained when the gradient of this functional,

F½x; b� � rp� j� B, is zero, where x represents the geome-

try of the internal flux-surfaces and where b denotes the

dependence of the equilibrium on the prescribed boundary.

Given an equilibrium state, i.e., F[x, b]¼ 0, the first order cor-

rection to the internal geometry induced by a boundary defor-

mation, db, is defined by rxF � n þrbF � db ¼ 0, which is

essentially Newcomb’s equation generalized to arbitrary geom-

etry, and the solution is n ¼ �ðrxFÞ�1 � rbF � db. Figure 6

shows a comparison of the SPEC linear solutions and the corre-

sponding Newcomb solutions, for different values of b. Each

cross in Fig. 6 corresponds to the radial displacement of each

ideal interface considered in SPEC. The agreement between

linear SPEC and linear theory is excellent.

Generally, nonlinear solutions to F[x, b]¼ 0 for a given

boundary are found by iterating on the linear correction, i.e.,

xiþ1 � xi � ðrxFÞ�1 � F, where i labels iterations. We per-

form a convergence study of the nonlinear SPEC equilibria

towards the corresponding linear prediction as the boundary

perturbation na is decreased. Excellent convergence is shown

in Figure 7, with the error scaling as e � Oðn2
aÞ. The agree-

ment arising from this verification exercise is of unprece-

dented nature and may shed some light on how to reconcile

the recently observed discrepancies between linear and non-

linear equilibrium codes that assume nested flux surfaces.18,19

A verification of the VMEC code against the same linear

theory has also been carried out recently in the case of zero-
pressure.20 VMEC cannot strictly compute equilibria with

discontinuous rotational-transform; however, nested flux

surfaces are enforced by the representation of the magnetic

field, and thus the solution that is obtained for the radial dis-

placement, n(r), is continuous and smooth, and always satis-

fies jn0j � 1. In fact, the VMEC solutions show a similar

behaviour to that in Fig. 1 for the case of zero-pressure,

when either the radial resolution or the shear is increased.20

Figure 8 shows how VMEC calculations can reproduce a

similar behaviour to that in Fig. 6 for the case of finite pres-

sure. In particular, the phenomena of amplification and

penetration of the boundary perturbation are observed as b is

increased. In any case, while VMEC seems to qualitatively

reproduce the ideal response to a RMP, an exact agreement

with Newcomb’s solutions may require explicit handling of

discontinuities in the magnetic field.

V. DISCUSSION AND CONCLUSIONS

We have shown that three-dimensional ideal-MHD equi-

libria with nested surfaces, arbitrarily smooth pressure gradi-

ent, and discontinuous-transform across resonances are well

defined and can be computed both linearly and nonlinearly.

These states, we believe, may represent the only possible

plasma equilibrium states with magnetic surfaces that are

both nested and resonant.

Experimentally, it has been observed that under certain

parameter regimes, magnetic islands forming around reso-

nant surfaces in stellarators are healed.21 Mechanisms re-

sponsible for self-healing of magnetic islands have been

suggested22,23 and related to similar island dynamics

observed in tokamaks.24 However, regardless of what

FIG. 6. SPEC linear solutions (crosses) and Newcomb solutions (solid lines)

for an m¼ 2, n¼ 1 boundary perturbation and for different values of b, from

b¼ 0 (lower curve) to b¼ 1.1% (upper curve). Here, D i- ¼ 1:4� 10�3.

FIG. 7. Error between linear and nonlinear SPEC solutions for an m¼ 2,

n¼ 1 boundary perturbation, b¼ 0.1%, D i- ¼ 10�2, and for different values

of the boundary perturbation amplitude na. Dashed line has slope 2.

FIG. 8. VMEC perturbed equilibrium solutions for an m¼ 2, n¼ 1 boundary

perturbation and for different values of b ranging from b¼ 0 (lower curve)

to b¼ 0.68% (upper curve). Radial resolution corresponds to N¼ 512 flux-

surfaces.
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mechanism is responsible for island-healing, the resulting

plasma equilibria should then be described by the class of

equilibria considered herein. And our predictions seem to

indicate that, in such a scenario, a RMP will be largely

amplified around the resonance and will penetrate all the

way into the core.

Two questions that remain to be answered are (1) what

sets the value of Di- and (2) how can these states be accessed

Question (1) was partially answered in Ref. 5 by show-

ing that there is a lower bound on the DC current sheet,

Di- > Di-min, which ensures that flux-surfaces are preserved.

It remains to be investigated whether an upper bound exists.

A close examination of the Rosenbluth solution25 for the

nonlinearly saturated ideal internal kink in a cylindrical toka-

mak, which is an example of three-dimensional ideal-MHD

equilibrium with nested surfaces, is presented in the

Appendix. The analysis shows that this equilibrium margin-

ally satisfies the sine qua non condition, jn0j � 1, and thus

this suggests that the current sheet on the resonant surface

corresponds to Di- ¼ Di-min. However, it may well be that

other states with Di- > Di-min are also accessible, e.g., non-

ideally. This will require further investigation.

Question (2) may be answered as follows. Assume that a

plasma is initially in a perfectly axisymmetric state, i.e., with

no resonances, and where the rotational-transform is continu-

ous. Then the mechanism able to generate a jump in trans-

form must obviously not preserve the functional i-ðWÞ, where

W is a flux-surface label, e.g., the enclosed toroidal flux. Any

non-ideal effect may provide such mechanism, although usu-

ally at the price of opening up an island; however, if the

island is subsequently healed and a shielded state with nested

surfaces is obtained, the final state may present a jump in the

transform. Another much less intuitive mechanism was

described by Eyink and Aluie,26 who showed that even

within ideal-MHD, where the plasma is assumed to be infin-

itely conducting, the breaking of Alfv�en’s theorem is possi-

ble. In fact, the frozen-in-flux condition that is usually

attributed to ideal plasmas results from combining Faraday’s

law and Ohm’s law; however, in the presence of current and

vorticity sheets, these two laws do not ensure the conserva-

tion of fluxes.26 Such proof would suggest that a jump in

transform could, in principle, be accessed even within ideal-

MHD, although this also requires further investigation.
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APPENDIX: CURRENT SHEET IN ROSENBLUTH’S
SOLUTION FOR THE NONLINEARLY SATURATED
IDEAL INTERNAL KINK

The nonlinearly saturated ideal internal kink in a cylin-

drical tokamak was calculated by Rosenbluth et al.25 and is

the classic example of three-dimensional ideal-MHD equilib-

rium with a resonant surface. This state results from an ini-

tially unstable axisymmetric equilibrium with a rational

surface at q¼ 1. The final, ideally stable equilibrium has

nested surfaces with an axisymmetric boundary, a current

sheet on the resonant surface, and an inner helical plasma

column with helicity n¼ 1, m¼ 1.

We now show that: (1) the solution for the displacement,

n, of the flux-surfaces obtained by Rosenbluth marginally

satisfies the sine qua non condition; (2) the conservation of

toroidal flux is only ensured to zeroth order in n, thus making

an equilibrium with a jump in i- of order Di- � n consistent

with Rosenbluth’s solution; and (3) the current sheet pre-

dicted on the resonant surface has a DC component and thus

is consistent with the existence of a jump in transform.

The nonlinear solution for the displacement is given in

Eq. (23) of Ref. 25

n x; hð Þ ¼
ðx

0

x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x0ð Þ þ g hð Þ

p � 1

" #
dx0 þ h hð Þ; (A1)

where h is the polar angle and n is the radial displacement of

a flux surface originally situated at a radius x with respect to

the resonant surface (x¼ 0 is the original radius of the reso-

nant surface). The new radius of a flux surface starting at x is

then, by definition,

r ¼ xþ nðx; hÞ; (A2)

which is Eq. (22) in Ref. 25. From Eq. (A1), we find the gra-

dient of the displacement at the resonant surface

@n
@x

				
x¼0

¼ �1 ; (A3)

which marginally satisfies the sine qua non condition for the

existence of equilibria, namely, jn0j � 1.

The nonlinearly saturated state is found by evolving the

plasma parameters under ideal constraints. Among these

constraints is the conservation of toroidal flux, which is

imposed in Eq. (19) of Ref. 25ð
sH

rdrdh ¼
ð

sc

rdrdh; (A4)

where the helical and cylindrical areas of integration, sH and

sc, are defined for a given flux-surface. Equation (A4) repre-

sents the conservation of areas and thus corresponds to the

conservation of toroidal flux in the limit of constant Bz.

Then, in Ref. 25, Eq. (A4) is differentiated with respect to x,

giving þ
r
@r

@x
dh ¼

þ
rc
@rc

@x
dh ¼ x; (A5)

where the last equality comes from the fact that rc¼ x by

construction. Finally, combining Eqs. (A1) and (A2) into Eq.

(A5), one gets þ
xþ nð Þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f xð Þ þ g hð Þ
q dh ¼ x : (A6)

In Ref. 25, the term n in Eq. (A6) is neglected, leading to a

fundamental relation
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þ
½f ðxÞ þ gðhÞ��1=2dh ¼ x�1 ; (A7)

which corresponds to Eq. (24) in Ref. 25. However, this rela-

tion is, as we have shown, only valid to zeroth order in n.

Therefore, the conservation of toroidal flux is only enforced

to zeroth order in n. In other words, any solution that violates

flux conservation up to order n is still consistent with

Rosenbluth’s solution.

Finally, we briefly consider the structure of the current

sheet in Rosenbluth’s solution. As stated in Ref. 25, the inte-

grated current sheet has magnitudeð
Jdr ¼ ½gðhÞ�1=2; (A8)

and since gðhÞ � n2 cos8ðh=2Þ we have thatð
Jdr � n cos4ðh=2Þ : (A9)

According to Eq. (A9), the magnitude of the current sheet

scales linearly with n, as in our theory.5 Moreover, a Fourier

decomposition of the function cos4ðh=2Þ reveals the pres-

ence of m¼ 0, m¼ 1, and m¼ 2 components in the expres-

sion for the current. Thus, there is a “DC” component

(m¼ 0) in the current sheet, consistent with the existence of

a jump in the rotational transform of order Di- � n.
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